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ABSTRACT

Digit-based election forensics typically relies on null hypothesis significance testing,
with undesirable effects on substantive conclusions. This paper proposes an alterna-
tive free of this problem. It rests on decomposing the observed numeral distribution
into the ‘no fraud’ and ‘fraud’ latent classes, by finding the smallest fraction of nu-
merals that either needs to be removed or reallocated to achieve a perfect fit of the
‘no fraud’ model. The size of this fraction can be interpreted as a measure of fraud-
ulence. Both alternatives are special cases of measures of model fit–the π∗ mixture
index of fit and the ∆ dissimilarity index, respectively. Furthermore, independently
of the latent class framework, the distributional assumptions of digit-based election
forensics can be relaxed in some contexts. Independently or jointly, the latent class
framework and the relaxed distributional assumptions allow to dissect the observed
distributions using models more flexible than those of existing digit-based election
forensics. Reanalysis of Beber and Scacco’s (2012) data shows that the approach
can lead to new substantive conclusions.

Author’s note: I am grateful to Tamás Rudas, Gábor Tóka, Levente Littvay, Zoltán Fazekas,
Daniela Širinić, Pavol Hardos, two anonymous reviewers, and the editors for helpful comments
and suggestions, and the members of the Political Behavior Research Group at CEU for a helpful
discussion. Replication materials are available online as Medzihorsky, Juraj, 2015, “Replication
Data for: Election Fraud: A Latent Class Framework for Digit-Based Tests”, http://dx.doi.
org/10.7910/DVN/1FYXUJ, Harvard Dataverse, V1 [UNF:6:FIWHvsHNzZgPStT0+kgbsQ==]
(Medzihorsky, 2015b), and include the version of the R package pistar (Medzihorsky, 2015a)
used in the analysis. The article uses data from Beber and Scacco (2012) which is available
online also as (Beber and Scacco, 2011). Supplementary materials for this article are available
on the Political Analysis Web site.
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1. INTRODUCTION

Methods for electoral integrity evaluation include statistical ones, some of which focus on digit

distributions in electoral returns and are known as ‘election forensics.’1 Digit-based election

forensics (DBEF) promises to detect some kinds of electoral fraud by an inexpensive inspection

of the electoral returns. Two features typify it. The first is the assumption that the distribution

of numerals in fraud-free returns is known and different from that in fraudulent ones, hereafter

referred to as the strong distributional assumption. The second is the evaluation of elections

by testing the statistical significance of the deviation from the null hypothesis that the observed

results are fraud-free.

The validity of DBEF has been questioned, mainly due to its distributional assumption. In-

dependently of this, there are issues with the use of null hypothesis significance testing (NHST)

detrimental to the usefulness of DBEF. The main contribution of the present paper is an alterna-

tive statistical approach based on latent classes free of these issues. The secondary contribution

is an independent method to relax the strong distributional assumption in some contexts. The

main finding is that adopting one or both can lead to new substantive conclusions, and provide a

new perspective on the enterprise of DBEF.

The core assumptions of DBEF and the criticism leveled at them are summarized in Section

2. Section 3 critiques the use of NHST in DBEF, and Section 4 introduces a latent class based

alternative. An independent approach to relax the distributional assumption of DBEF imple-

mented with loglinear models is presented in Section 5. Section 6 shows, reanalyzing Beber and

Scacco’s (2012) data, that the proposed methods can lead to new substantive conclusions as well

as a new perspective on the enterprise DBEF.

1The term ‘election forensics’ has been coined by Mebane (2006a). Other examples of this approach are found
e.g. in Mebane (2006b, 2007, 2008, 2010a,b); Mebane and Kalinin (2009); Buttorf (2008); Breunig and Goerres
(2011); Pericchi and Torres (2011); Beber and Scacco (2012), and as a part of a more general approach in ?.
For an overview of electoral integrity evaluation methods and the place of election forensics in this context see ?
and Alvarez et al. (2012).
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2. DISTRIBUTIONAL ASSUMPTIONS IN DBEF

Existing DBEF methods are based on the assumption that the distribution of numerals in fraud-

free vote counts is known and different from that in fraudulent ones. Typically, this distribution is

derived from Benford’s law (BL), an observation that for certain kinds numbers the frequencies

of digits at each position resemble a logarithmic distribution (Newcomb, 1881; Benford, 1938).

Under BL the probability of leading digit d ∈ {1, . . . ,9} is

P(D1 = d) = log10

(
1+

1
d

)
,

and of digit d ∈ {0, . . . ,9} in position j ∈ {2, . . . ,J}

P(D j = d) =
10 j−1−1

∑
k=10 j−2

log10

(
1+

1
10k+d

)
.

Not all DBEF uses BL–Beber and Scacco (2012) expect under no fraud uniformly distributed

numerals in the last digits of three or more digit numbers. In practice, this is not radically dif-

ferent, since the Benford distribution with increasing digit order approaches uniformity, getting

close to it already at the third digit (see Table A.1 in the Appendix).

The strong distributional assumption of DBEF has been subject to several critiques. Since

the present paper proposes a way to bypass these issues in some contexts, they are only briefly

summarized here. The relevance of BL for fraud-free vote counts is argued for using formal

and empirical evidence. First, it has been proved that digits in numbers randomly drawn from

a random mixture of distributions converge to a logarithmic distribution (Hill, 1995), and ob-

served that many numbers that represent naturally occurring phenomena follow it. Second, in

applications such as forensic accounting and scientific fraud detection, BL-based methods have

been considered successful.2 It is contentious that elections, free of fraud or not, share the rele-
2A brief discussion of digit-based forensics outside of elections is provided by Beber and Scacco (2012). Inter-
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vant features with such processes (Deckert et al., 2011). Third, studies that attempt to simulate

fraud-free elections show that numerals in the simulated vote counts follow BL (e.g. Mebane,

2006a) or uniformity (Beber and Scacco, 2012). However, there is little evidence that the sim-

ulated processes bear sufficient resemblance to their empirical counterparts, and given the lack

of well-formed models the value of these simulations is not known (see Deckert et al. 2011 and

also Mebane 2011). Fourth, some elections for which there is considerable other evidence of

fraud or its absence are evaluated congruently by DBEF (Beber and Scacco, 2012). The value

of this validation depends on whether the sample represents typical fraudulent and fraud-free

elections, which at best has a large uncertainty attached.

The expectation that BL (or uniformity) will not hold under fraud is argued for using evi-

dence from experiments and simulations. First, a considerable amount of experimental evidence

shows that when asked to generate random numbers, humans produce numbers with numeral

distributions different from Benford’s or uniform (see e.g. Nickerson, 2002; Beber and Scacco,

2012). Since fabrication of electoral returns is a similar process, it is argued, it should show

in the distribution of the digits. The experiments have used a range of subjects of different na-

tionalities, ages, and education. Yet, it is not known how well do their findings extend to those

with very different backgrounds, or to fraudsters who operate under different priorities and con-

straints. Also, there is little to prevent the fraudsters from using simple tools such as dice or

pseudo-random number generators. Second, simulated fraudulent elections produce vote counts

with numerals that do not follow BL (e.g. Mebane, 2006a). It merits skepticism whether the

simulations adequately represent their empirical counterparts.

These issues are crucial for the validity of the existing DBEF methods, and Section 5 shows

how they can be in some contexts bypassed. Yet, there are also issues related to the statistical

techniques used in DBEF that are of equal importance. These are introduced in the following

section, and resolved in Section 4.

ested readers can find a comprehensive inter-disciplinary bibliography on Benford’s law and its application at the
Benford Online Bibliography http://benfordonline.net/list/alphabetical.
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3. STATISTICAL ISSUES IN DBEF

Existing DBEF studies differ in the order of the inspected digits, their expected distributions,

and the statistics used. Yet, all compare the observed digit distribution to the one expected

under no fraud, typically by testing the statistical significance of the deviation from the null

hypothesis that the observations are drawn from the expected distribution. The null hypothesis

significance testing framework is a venerable statistical workhorse, fruitfully applied to a wide

range of problems. However, a large and diverse body of literature finds issues with its features,

often repeatedly and independently (see e.g. Ziliak and McCloskey, 2008). Several of these

features have within the context of DBEF unappealing effects on substantive inferences.

First, NHST assumes that the data were generated by stochastic sampling. However, elections

are unique events that cannot even in principle be repeated, and their returns are better understood

as population data. Relatedly, it is embedded in NHST that with a known frequency the test will

reject the null hypothesis when it is true (i.e., commit a Type I error). In the context of DBEF it

means that some non-fraudulent elections will be labeled as fraudulent, and regardless of whether

fraud is present, the more the investigator tries to uncover it, the more evidence of it she will

find. Since allegations of fraud often arise in new democracies and developing countries (see

e.g. Norris et al., 2014), and can reflect the biases of actors that make them, this can lead to the

confirmation of these biases. Lowering the Type I error rate comes at the price of the power

of the test, and its choice should be based on operational concerns. Since fair elections are

fundamental to democratic legitimacy, and raising and amplifying unsubstantiated suspicions of

electoral fraud can undermine it, setting the rate is at best an extremely sensitive task. In short,

NHST is designed for settings where stochastic samples are repeatedly taken from a population,

and the Type I error rate is chosen based on operational concerns, neither of which applies well

in DBEF.

Third, inferences are limited if the test rejects the model. The test is not informative if the
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model is not true, because it rests on the comparison of the value of the test statistic with its

distribution if the model is true. Furthermore, if all restrictive models are rejected, there are no

validly defined residuals. In existing DBEF the restrictive models are of fraud-free elections,

and no alternative ones are considered. Thus, if the model of no fraud is rejected, there is no

alternative model, and no residuals.

Finally, test statistics have features that can be unappealing in some contexts. Perhaps the

best known test statistic, Pearson χ2, is sensitive to sample size in the sense that it might lead to

different conclusions for two samples with identical densities, but different sample sizes. In the

context of DBEF this might lead to rejections of models of no fraud with large samples. This has

been recognized in the digit based forensic literature and different solutions have been devised.

One group of solutions rests on offering different test statistics (Leemis et al., 2000; Giles,

2007; Tam Cho and Gaines, 2007; Judge and Schechter, 2009). As illustrated by Judge and

Schechter’s (2009) analysis, these statistics can with the same data on the same level of statistical

significance lead to different conclusions. Simply, alternative test statistics offer different trade-

offs in terms of their sensitivity, but do not resolve the above mentioned issues embedded in the

NHST framework.

Another group of solutions relies on Bayesian inference. Pericchi and Torres (2011) and Jiménez

and Hidalgo (2014) build on the χ2 test, but use adjusted p-values and compute Bayes factors,

obtaining an appealing quantity–the probability of the hypothesis given the data. This approach

builds on the χ2 test and inherits some of its assumptions, and furthermore requires the use of

priors. Cantú and Saiegh (2011) use a naive Bayes classifier, trained on synthetic data using

significance testing, and generate for each inspected set of digits a posterior probability of being

fraudulent. In contrast, the latent class approach introduced in the present paper does not require

the use of priors, does not rely on NHST in any way, and rests on assumptions known to be true.

The above outlined issues stem from the fundamental setup of the null hypothesis significance

testing framework, and cannot be resolved by choices within it, such as of a different test statistic
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or significance level. The next section outlines an alternative framework based on latent class

analysis that can replace NHST in DBEF.

4. LATENT CLASS DIGIT BASED ELECTION FORENSICS

In a set of electoral returns fraud can affect between 0% and 100% of the reported numbers. Ac-

cordingly, the observed distribution of numerals O is composed of a distribution N that belongs

to the non-fraudulent class, and a distribution F that belongs to the fraudulent one, the size of

which ζ ∈ [0,1],

O = (1−ζ )N +ζ F. (1)

Existing DBEF methods restrict the digit distribution only for the non-fraudulent results, leaving

that of the fraudulent ones unspecified. Because of this flexibility, the model in (1) describes the

data perfectly under values of ζ on [ζL,1], where ζL is the lowest such size of the unrestricted

component that will still result in perfect fit. If a non-fraudulent distribution describes the data

perfectly, then ζL is zero. The value of ζL depends on whether to achieve a perfect fit of the

no-fraud model the unrestricted component is to be removed or reallocated. In the former case

ζL is a special case of the π∗ mixture index of fit (Rudas et al., 1994) and in the latter of the

∆ dissimilarity index (Gini, 1914). Standard measures of model fit assume that a single model

describes the whole population. The indexes abandon this idea, and assume that the population

is composed of two classes, units for which the model holds true and those for which it does not.
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4.1. The π∗ Mixture Index of Fit

If the perfect fit is to be achieved by removing the unrestricted component, then under the scaled

distribution of the non-fraudulent class (1−ζ )N the probability of any of the digits is not higher

than its observed one. After substituting ζ with π , for any set of observed digits the fit of this

model is perfect for all π on [π∗,1], where π∗ is the lowest such size that will still result in

perfect fit. This quantity can be interpreted as the smallest fraction of the inspected digits that

cannot be described as free of fraud. As such, it is a special case of the π∗ mixture index of

fit (Rudas et al., 1994; Rudas, 1998, 1999, 2002), a latent class based measure of model fit with

wide applicability.3

The quantity of interest is π∗, the smallest share of cases for which the model does not hold. It

can be understood as a measure of distance from the observations O to the model M , the smallest

such π that decomposes the observed density perfectly into an element M from the model and an

unspecified component U ,

π
∗(O,M ) = inf{π : O = (1−π)M+πU, M ∈M , U unspecified}.

Conventional models of fraud-free digit distributions lack free parameters, which eases the

application of the index. To obtain the value of the index, the scaled model density (1−π)M

needs to be ‘below’ the observed density O while ‘shrinking’ as little as possible, that is only as

much as it needs to fit in the cell where it fits the worst. This is the cell with the highest ratio of

the model density over the observed density. The solution is to multiply the model density by the

3The π∗ index of fit has been applied in a variety of settings including contingency tables analysis (Rudas et al.,
1994; Clogg et al., 1995, 1997), item response models (Rudas and Zwick, 1997; Hernández et al., 2006; Formann,
2006; Revuelta, 2008), latent class analysis (Formann, 2000, 2003a,b), regression (Rudas, 1999; Verdes and Rudas,
2003), missing data (Rudas, 2005; Rudas and Verdes, 2015), and robust statistics (Ispány and Verdes, 2014).
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inverse of this ratio. The value of π∗ is

π
∗ = 1− 1

max
i=1,...,N

{
Mi
Oi

} ,
as shown more generally by Rudas (1999). The procedure is illustrated in Figure 1 with simulated

data.

[Figure 1 about here.]

4.2. The ∆ Dissimilarity Index

If the perfect fit of the model is to be achieved by reallocating some of the observations, then ζL

in (1) is the sum of the absolute values of the residuals divided by twice the sample size. This

is because the residuals are symmetric in the sense that the sum of the absolute values of the

positive residuals is equal to that of the negative residuals. In this setting ζL is a special case

of the ∆ dissimilarity index (Gini, 1914), defined for a contingency table with cell counts Oi,

predicted values Mi, and sample size N as

∆ =
∑

N
i=1|Oi−Mi|

2N
.

While the ∆ index is not usually presented in latent class terms, in that case the interpretation

of the in-model component is different than under the π∗ index. Whereas under π∗ the unscaled

‘in-model’ distribution N is perfectly described by the model, it is not under ∆. Instead, the

scaled ‘in-model’ distribution (1− ζ )N is interpreted as the largest such fraction that does not

need to be reallocated to achieve a perfect fit of the model if the rest (ζ F) is reallocated to this

aim.

The dissimilarity index can be given a straightforward interpretation in the context of elec-
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toral fraud. In an election, usually the returns for each of the options from each territory have to

be reported. Thus, also the total number of their last digits is fixed. If the fraudsters substitute a

true number by a fraudulent one, its last digit can be changed and thus reallocated. Then, ∆ can

be interpreted as the smallest fraction of digits that would need to be changed to their presumed

original values in order to observe the distribution thought to characterize the absence of fraud.

4.3. The Appeal of π∗ and ∆ in Election Forensics

In the context of digit-based election forensics the π∗ and ∆ indexes are appealing with a host of

features.4 First, they do not assume homogeneity or stochastic sampling, and consequently their

underlying assumptions are always true. Electoral returns are better understood as a population,

and this allows to treat them as such. Second, they do not rest on rejecting or retaining a null

hypothesis, and do not run the risks of Type I and II errors. Consequently, regardless of how

many elections will be inspected, none will be falsely labeled as fraudulent or fraud-free. The

amount of fraud will simply be over- or under-estimated for some. In short, the indexes allow to

ask the quantitative question of how much fraud there was, instead of just the qualitative one of

whether there was fraud.

Third, few model fit statistics have an equally straightforward interpretation and are easy to

reason about as do π∗ and ∆. Fourth, both indexes are independent of sample size in the sense

that for any of them the value is the same for any two datasets with the same observed probability

distribution regardless of their size. This allows to compare the fit of the model to datasets of

different sizes. Fifth, the units in the unrestricted component can be interpreted as residuals.

Thus, unlike in the conventional approach, the residuals are defined in a way that is always valid,

and are available for interpretation regardless of how badly does the model fit (see esp. Clogg

et al., 1995).
4These features are discussed in detail in the context of π∗ by Rudas et al. (1994); Clogg et al. (1995), and Rudas

(1998, 2002), with the exception of the use of jackknife and the use as a test statistic in NHST.
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Additional inferential leverage is available under stochastic sampling. The uncertainty at-

tached to sample size can be represented with confidence intervals for the fit statistic, e.g. via

jackknife, as shown for π∗ by Dayton (2003). From a strict frequentist perspective, if the data

are not a stochastic sample, such interval estimates are not meaningful. From a pragmatically

Bayesian perspective, given their low cost they can be treated as approximations of credible in-

tervals under weakly informative priors. In addition, the indexes can serve as test statistics in

NHST using simulated reference distributions. Given the discussed features of NHST this might

not be a procedure of first choice.

Finally, the present paper applies the indexes by decomposing the observations into a com-

ponent that belongs to a restrictive model and an unrestricted component. The decrease in

power due to the use of the unrestricted component is offset by considerably lighter assump-

tions. Should restrictive models of fraud processes be available, the indexes can be applied either

to them, or to mixtures of models of fraudulent and fraud-free processes. In such settings the

indexes could no longer be automatically interpreted as degrees of fraudulence, but the other

advantages they have over NHST would remain.

5. RELAXING THE DISTRIBUTIONAL ASSUMPTIONS OF DBEF

Most existing criticism of DBEF is directed at its strong distributional assumption. This assump-

tion can be relaxed in a way independent of the proposed latent class approach. Specifically,

where multiple sets of numerals are available, the investigator can ask whether they can be de-

scribed by the same probability distribution under the relaxed distributional assumption that nu-

merals in fraudulent and fraud-free results are distributed differently. Under this assumption, if

a single probability distribution describes all the relevant subsets, either all or none of them are

deemed fraudulent. Other evidence can decide which of these interpretations is more appropri-

ate. The ability of such procedures to detect fraud depends on more evidence than the existing
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DBEF, but with much weaker and less controversial assumptions.

[Table 1 about here.]

Statistically, such inspections can be done in multiple ways, including loglinear models (see

e.g. Agresti, 2002, 314-56), which are appealing due to their flexibility. An intuition can be

gained from the following example. In an election suspect of fraud observers were deployed,

and reported little evidence of fraud in the visited wards. This data can be represented as a

contingency table shown in Table 1, where di j is the count if ith numeral in the jth category. The

simplest loglinear model which can applied is

log di j = λ ,

under which all numerals are equally likely regardless of whether they are from a ward with

observers. If the proportion of wards with observers is not 50%, it is useful to introduce the

‘observer’ parameters λ j,

log di j = λ +λ j,

which is equivalent to expecting the digits to be uniformly distributed within each group of wards,

but not necessarily overall. The model of independence for this data is

log di j = λ +λi +λ j,

which allows also the frequency of each numeral to differ by including the numeral parameters λi.

Under this model a single probability distribution estimated from the data describes the numerals,

regardless of whether they came from the wards with observers. Assuming that fraud manifests

itself in digit distributions, and that the observer reports are highly credible, this would temper

suspicions of fraud. If the model does not fit well, under the same assumptions the allegations of

fraud would appear more credible.
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Typically, the situation tends to be more complex than in the above example. Most elec-

toral returns contain at least the following information on the digits of interest–numeral, party

(candidate), and who carried a given territory. This allows to use the independence model

log di jk = λ +λ
D
i +λ

P
j +λ

R
k ,

where λ D
i are the numeral (digit), λ P

j the party, and λ R
k the result parameters. The usefulness

of this model is limited as it restricts the numbers of won/lost territories to be the same for

all parties. Substantively interesting models will lie between the independence model and the

saturated model

log di jk = λ +λ
D
i +λ

P
j +λ

R
k +λ

DP
i j +λ

DR
ik +λ

PR
jk +λ

DPR
i jk ,

which fits perfectly by definition. Substantive inferences can be drawn by comparing the fit of the

models that include one or more of the two-factor interaction (association) terms {λ DP
i j ,λ DR

ik ,λ PR
jk }.

If a model without association terms involving numerals describes the data well, then a single

probability distribution fits the numerals under all party-result combinations. The use of this

approach is shown in the following section on empirical examples of elections believed to be

fraudulent as well as fraud-free.

The above examples deal in accord with the focus of this paper with strictly descriptive ques-

tions of differences between distributions, and by extension of presence of fraud. However, in

some settings the loglinear analysis can be extended to handle causal questions. For instance,

considering the first example, conditional on the observer-allocation procedure and other avail-

able data, it might be possible to estimate the effect of observer presence on electoral integrity.

Loglinear models can be used to test hypothesized causes of fraud, provided the variables of

interest are either discrete, or can be discretized with acceptable loss of information.
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6. EMPIRICAL DEMONSTRATION

Beber and Scacco (2012) validate their diagnostic procedures using both elections strongly sus-

pect of fraud and elections widely considered fraud-free.5 This section reanalyzes their data with

the proposed approach as well as with a conventional approach, represented by Pearson’s χ2

test, the most common NHST method in the digit-based forensic literature. I opt for the no-fraud

model of uniformity, since as Beber and Scacco (2012) demonstrate, it is better theoretically

founded than the Benford-based alternatives. Each set of electoral returns is first analyzed under

the strong distributional assumption of DBEF and then relaxing this assumption.

6.1. Sweden 2002

The Swedish parliamentary elections of 2002 were selected by Beber and Scacco (2012) as an

example of elections believed to be fraud-free, and identified as such by them. In the reanalysis,

I classify the last digits by numeral, party, and ward result. Detailed results are reported in the

Appendix, Section A.3.1. Under the strong distributional assumption both latent class indexes

show that uniformity describes the inspected sets of numerals well and thus no suspicions of fraud

are raised. NHST leads to the same conclusion, but at the price of more difficult assumptions.

Under the relaxed distributional assumption the extent of contamination by fraud seems similar in

the inspected subsets. Given other evidence that indicates the absence of fraud, we can conclude

that this extent is practically zero, and the detected small departures from the model are due to

other causes.
5Beber and Scacco’s (2012) data are available online as Beber and Scacco (2011). The data used in the

analysis, as well as the replication code are available online Replication materials are available online as Medz-
ihorsky, Juraj, 2015, “Replication Data for: Election Fraud: A Latent Class Framework for Digit-Based Tests”,
http://dx.doi.org/10.7910/DVN/1FYXUJ, Harvard Dataverse, V1 [UNF:6:FIWHvsHNzZgPStT0+kgbsQ==]
(Medzihorsky, 2015b).
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6.2. Nigeria 2003

The Nigerian 2003 presidential elections were selected by Beber and Scacco (2012) as strongly

alleged of fraud, and the inspected returns (from the Plateau state) were flagged accordingly by

their diagnostics. I reanalyze them classified by numeral, party, and polling station result. Section

A.3.2 in the Appendix reports the findings in detail. Under the strong distributional assumption

the latent class diagnostics lead to a similar substantive assessment as NHST. Under the relaxed

distributional assumption it appears that fraud contaminated all inspected party-result subsets of

digits roughly equally, since all are relatively close to a common distribution. Considering other

evidence on the election presented by Beber and Scacco (2012) this suggests that all inspected

returns were affected by fraud and/or clerical errors to a similar extent.

6.3. Senegal 2000 and 2007

The Senegalese presidential elections of 2000 and 2007 differ in that the former are reported to

be largely free of fraud, and the latter marred with it (Beber and Scacco, 2012). This makes them

an especially interesting test case for inspection under the relaxed distributional assumption–if

this assumption holds and the reports are accurate, then digit distributions should vary across

elections.

[Table 2 about here.]

Beber and Scacco (2012) pool the numerals into those from winner’s (A. Wade) returns and

those from selected other columns, and retain the hypothesis of no fraud for 2000 and reject it for

2007. I inspect also the returns of the runners up (A. Diouf in 2000 and I. Seck in 2007). Table 2

reports the digits by numeral, candidate, and year (information on ward result is not provided

by Beber and Scacco (2012)).
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[Table 3 about here.]

The fit of uniformity to the inspected subsets of returns is reported in Table 3. The χ2 test

rejects at the 5% level the null for winner’s last digits in 2000, but not in 2007. However, the

sample is much larger in 2007, and the test is sensitive to sample size–if the winner’s digits

would in 2000 have the 2007 sample size the null would be rejected at the 5% level, and would

be retained if in 2007 they would have the 2000 sample size.6 For the returns of the runners

up–not inspected by Beber and Scacco (2012)–uniformity is rejected by the χ2 test at the 1%

level in both elections. A somewhat different picture is provided by the π∗ and ∆ indexes–the

distances from uniformity were similar for the winner in both elections (π∗ of 7% vs. 9% and ∆

of 2% vs. 3%) and for the runner up of 2000 and the second and third candidate of 2007 (π∗ of

16%, 18%, and 16%, and ∆ of 4%, 5%, and 5%), respectively. These findings can be interpreted

in at least two ways. First, assuming uniformity characterizes fraud-free results, fraud appears

similarly prevalent in both elections in the returns for the top two candidates. Alternatively, one

can abandon this assumption for the case of Senegal in the observed period.

Under the relaxed distributional assumption, if fraud was relatively low in 2000, but much

more present in 2007, then the digit distributions should be different for the two elections, even if

the uniform distribution does not characterize the fraud-free last digits. This can be tested with a

series of loglinear models reported in Table 4, starting with the independence model. The second

model allows the candidates (defined by their placement) to carry different number of territories

across elections, imposing the same probability distribution of numerals on all year-candidate

combinations. The following three models allow additional interactions.

[Table 4 about here.]

The second model is the simplest with near perfect fit–only only 1% of the observations

need to be reallocated or 4% removed for perfect it, as shown in Figure 2. Under the relaxed
6For the 2000 density with the 2007 sample size χ2 is 17 and p-value 0.049 and for the 2007 density with the

2000 sample size χ2 is 14 and p-value 0.121 (one million simulations from the reference distribution).
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distributional assumption both elections seem comparably fraudulent. How to negotiate this in-

ference with the reports of high prevalence of fraud in the second election, but of low one in

the first? This might be a fruitful venue for the reanalysis of the reports–it is possible that they

underestimate the extent of fraud in 2000 and/or overestimate it in 2007. However, a simpler and

more troubling answer is readily available. Namely that–at least for the case of Senegal in the

observed period–fraudulent and fraud-free electoral returns are characterized by practically iden-

tical probability distributions of last digits. In other words, that the distribution of last digits is

not informative with regards to the presence of fraud. This of course means calling into question

the enterprise of digit-based election forensics.

[Figure 2 about here.]

7. LIMITATIONS

The value of the empirical demonstration of the proposed solutions to the problems of digit-based

election forensics depends on the degree to which the inspected electoral returns represent typical

fraudulent and fraud-free elections. This degree has at best a very large uncertainty attached. For

that reason, it is common in the literature to validate the methods also using simulations (see

Mebane, 2006a; Deckert et al., 2011; Beber and Scacco, 2012). As discussed in Section 2, the

value of this is not known. I report the performance of π∗ and ∆ in such simulations in the

Appendix, and do not claim them to be a validation of the methods. Moreover, even if a DBEF

method would be convincingly shown to be valid for past elections, it can be invalidated by

deliberate behavior on the part of the fraudsters. In case they would deem it worth the costs, the

fraudsters can adopt a variety of simple tools that will allow them to fabricate numbers with any

digit distribution they desire.
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8. CONCLUSION

Among the methods for electoral integrity evaluation digit-based election forensics differenti-

ates itself with its promise to inexpensively evaluate elections requiring only the relevant vote

counts. This promise might seem too good to be true, and indeed faces serious challenges. The

present paper focuses on whether it can deliver on its promise, and prioritizes solutions that can

resolve some of the challenges over the question how well does DBEF perform compared to its

alternatives.

Digit-based election forensics relies on the strong assumption that a known probability dis-

tribution describes digits in the absence of fraud, but not in its presence. Typically, it evaluates

elections with a test of statistical significance of null hypothesis of no fraud based on this as-

sumption. Two independent sets of issues related to the strong distributional assumption and the

use of null hypothesis significance testing decrease the usefulness of DBEF. The present paper

proposes an alternative to NHST free of its issues, and an independent approach that allows to

relax the distributional assumption in some contexts. The former is based on decomposing digit

distributions into fraudulent and fraud-free components, and the later on comparing multiple sets

of digits using loglinear models.

Reanalysis of Beber and Scacco’s (2012) data finds that in two instances the proposed meth-

ods lead to similar substantive conclusions, based however on less restrictive assumptions. The

finding from the final and arguably the most interesting test are different, and can be interpreted

as going against other evidence on the case, or as evidence that even the relaxed distributional

assumption is inadequate. The second interpretation suggests that the enterprise of digit-based

election forensics is not feasible, since digits can easily be distributed the same way in fraudulent

and fraud-free results even if the fraudsters do not deliberately attempt this. Choosing between

these two interpretations requires additional information. Given that fair elections are crucial for

democratic legitimacy, this can be read as a note of caution for the use of digit-based election
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forensics.
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Figure 1: Illustration of the mixture index of fit decomposition of an observed set of digits (a) using a discrete
uniform model (b). The highest ratio of the model density over the observed density is for digit ‘3’ (c). The
resulting latent class model (d) has a π∗ value of 0.26. Simulated data.
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Figure 2: Model fit under π∗ of the second loglinear model (year-candidate, numeral) to the Senegalese data.
N=15,172. Model distribution in grey, residuals in white.
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Table 1: Classification of last digits from ward returns by the numeral and whether the ward has been inspected by
election observers.

Observers

Numeral Yes No

0 d1,1 d1,2
1 d2,1 d2,2
2 d3,1 d3,2
3 d4,1 d4,2
4 d5,1 d5,2
5 d6,1 d6,2
6 d7,1 d7,2
7 d8,1 d8,2
8 d9,1 d9,2
9 d10,1 d10,2
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Table 2: Last digits in election results in Senegalese presidential elections of 2000 and 2007 for the winner in both
(Wade) and the candidate that placed second (Diouf in 2000 and Seck in 2007). Only numbers with three or more
digits included. N=15,172. Source: author’s calculation. Data source: Beber and Scacco (2012).

2000 2007

1st 2nd 1st 2nd

0 405 265 822 212
1 386 244 764 198
2 373 222 705 189
3 395 261 761 174
4 409 232 757 195
5 368 233 701 159
6 367 213 714 170
7 395 206 705 156
8 353 209 665 201
9 361 191 689 147
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Table 3: Fit of the uniform distribution to ten subsets of last digits in the Senegalese electoral returns. Reference
distributions of the test statistics obtained with one million simulations. Fraction sizes in %. Jackknifed confidence
intervals for π∗ and ∆. ‘Other col.’ refers to returns pooled by Beber and Scacco (2012).

N χ2 p π∗ 95% ci ∆ 95% ci

2000 1st (Wade) 3,812 8.89 0.45 7 (0, 17) 2 (1, 4)
2nd (Diouf) 2,276 22.97 0.01 16 (5, 27) 4 (2, 6)
First Two 6,088 23.02 0.01 9 (2, 17) 3 (1, 4)
Registered 8,058 7.18 0.62 5 (0, 11) 1 (0, 2)
Other Col. 10,334 5.34 0.80 3 (0, 9) 1 (0, 2)

2007 1st (Wade) 7,283 26.82 <0.01 9 (2, 15) 3 (1, 4)
2nd (Seck) 1,801 24.08 <0.01 18 (6, 31) 5 (3, 8)
First Two 9,084 37.09 <0.01 8 (2, 14) 3 (2, 4)
3rd (Dieng) 1,091 15.15 0.09 16 (0, 32) 5 (2, 8)
Other Col. 2,892 26.54 <0.01 15 (5, 25) 4 (2, 6)
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Table 4: Model fit for five loglinear models fit to the Senegalese data. N=15,172. Fraction sizes in %. Jackknifed
confidence intervals.

χ2 df p π∗ 95% ci ∆ 95% ci

Independence 596.73 28 <0.01 12 (10, 14) 8 (8, 9)
Candidate-Year, Numeral 26.53 27 0.49 4 (0, 8) 1 (1, 2)
Candidate-Year, Numeral-Candidate 13.25 18 0.78 2 (0, 4) 1 (0, 2)
Candidate-Year, Numeral-Year 23.13 18 0.19 3 (1, 4) 1 (1, 2)
Candidate-Year, Numeral-Year, Numeral-Candidate 8.39 9 0.50 1 (0, 3) 1 (0, 1)
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